Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 195: 114862, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843716

RESUMO

The two microRNAs miR-192 and miR-194 are abundantly expressed in the liver and are considered serum biomarkers of liver injury. However, their role in the development of liver injury has not yet been determined. In this study, we generated miR-192/194 mutant mice and determined the effect of miR-192/194 loss on acetaminophen (APAP)-induced acute liver injury. With genetic depletion of miR-192/194, mutant mice were fertile and normally developed. No spontaneous liver injuries were observed in mutant mice. After APAP administration, mutant mice developed less severe liver damage than control mice. Specifically, mutant mice exhibited significantly lower serum alanine transaminase (ALT) levels and pericentral necrosis/apoptosis than control mice receiving APAP. ß-catenin signaling was activated during the early phase of liver injury. Activated ß-catenin signaling led to faster cellular proliferation and higher expression of AXIN2 and glutamine synthetases. After partial hepatectomy, the miR-192/194 mutant hepatocytes were more regenerative than control hepatocytes (as shown by BrdU incorporation). Moreover, in vitro experiments indicated that miR-194, but not miR-192, specifically repressed ß-catenin signaling, while animal experiments revealed that chemical-mediated knockdown of ß-catenin signaling compromised APAP resistance that liver protected from miR-192/194 genetic depletion. Collectively, our data indicated that the loss of miR-194 promoted liver regeneration and protected the liver from APAP-induced injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Regeneração Hepática/genética , Fígado/metabolismo , MicroRNAs/genética , Acetaminofen , Animais , Proliferação de Células/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Regulação da Expressão Gênica , Fígado/patologia , Fígado/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo
2.
Cell Signal ; 81: 109930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515696

RESUMO

MicroRNA-27 is a critical non-coding metabolic gene that is often aberrantly overexpressed in non-alcoholic fatty livers (NAFLD). However, the pathogenic role of miR-27 in NAFLD remains unknown. In this study, we attempted to identify the mechanism by which miR-27 was regulated in the context of insulin resistance, a predisposed metabolic disorder in NAFLD. Our data from cell culture and animal studies showed that insulin, CREB, and Hippo signalings coordinately regulated miR-27. First, miR-27 was upregulated in palmitate-treated cells and high fat diet-fed mouse livers, which exhibited insulin resistance and CREB overexpression. Second, miR-27 peaked in the mouse liver at the post-absorptive phase when CREB activity was increased. Also, miR-27 was increased rapidly in cell lines when CREB was deactivated by insulin treatment. Third, miR-27 was decreased in cultured cells when CREB was downregulated by siRNA or metformin treatment. In contrast, Forskolin-mediated activation of CREB promoted miR-27 expression. Fourth, Hippo signaling repressed miR-27 in a CREB-independent manner: miR-27 was reduced in cells at full confluence but was inhibited in cells transfected with siRNA against Lats2 and Nf2, which were two positive regulators of Hippo signaling. Lastly, bioinformatics and luciferase assay showed that miR-27 inhibited Akt phosphorylation by targeting Pdpk1 and Pik3r1. Overexpression of miR-27 impaired Akt phosphorylation in cell lines and primary mouse hepatocytes upon insulin stimulation. In conclusion, our data suggest that insulin, CREB, and Hippo signalings contribute to aberrant miR-27 overexpression and eventually lead to insulin resistance in NAFLD.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Via de Sinalização Hippo , Resistência à Insulina , Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Humanos , Insulina/genética , Masculino , Camundongos , MicroRNAs/genética , Células NIH 3T3
3.
Pharmacology ; 105(3-4): 209-224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31630149

RESUMO

Nitroglycerin (NTG), a nitric oxide-donating drug, may increase tumor blood flow and consequently increase cancer drug delivery to tumor cells. Thymidylate synthase (TS) is an essential enzyme for the de novo synthesis of deoxythymidine monophosphate; we had found that knocking down the expression of TS sensitizes lung cancer cells to cisplatin-induced cytotoxicity. However, whether NTG and cisplatin could induce synergistic cytotoxicity in nonsmall cell lung cancer (NSCLC) cells through modulating TS expression is unknown. In this study, NTG decreased TS expression in an AKT, also known as Protein kinase B (PKB) inactivation dependent manner in human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Enhancement of AKT activity by transfection with constitutive active AKT vectors increased the TS expression level as well as the cell survival pretreated by NTG. Moreover, NTG synergistically enhanced cytotoxicity and cell growth inhibition by cisplatin treatment in NSCLC cells, which were associated with downregulation of TS expression and inactivation of AKT in A549 and H1703 cells. Together, these results may provide a rationale to combine NTG with cisplatin-based chemotherapy to enhance the therapeutic effect for lung cancer in the future.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nitroglicerina/farmacologia , Células A549 , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Regulação para Baixo , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/patologia , Nitroglicerina/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timidilato Sintase/genética
4.
Toxicol Res (Camb) ; 8(3): 459-470, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160978

RESUMO

Capsaicin, a natural active ingredient of green and red peppers, has been demonstrated to exhibit anti-cancer properties in several malignant cell lines. Excision repair cross-complementary 1 (ERCC1) has a leading role in the nucleotide excision repair (NER) process because of its involvement in the excision of DNA adducts. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating ERCC1 expression is unknown. In this study, capsaicin decreased the ERCC1 expression in an AKT inactivation dependent manner in two human lung adenocarcinoma cells, namely, A549 and H1975. Enhancement of AKT activity by transfection with constitutive active AKT vectors increased the ERCC1 protein level as well as the cell survival by capsaicin. Moreover, capsaicin synergistically enhanced the cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of ERCC1 expression and inactivation of AKT in A549 and H1975 cells. Together, these results may provide a rationale to combine capsaicin with erlotinib for lung cancer treatment.

5.
Toxicology ; 417: 54-63, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796972

RESUMO

Salinomycin is a polyether ionophore antibiotic having anti-tumorigenic property in various types of cancer. Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, are associated with an aggressive disease phenotype and poor prognoses. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-AAG could enhance salinomycin-induced cytotoxicity in NSCLC cells through modulating TP expression in two non-small-cell lung cancer (NSCLC) cell lines, A549 and H1975. We found that salinomycin increased TP expression in a MKK3/6-p38 MAPK activation manner. Knockdown of TP using siRNA or inactivation of p38 MAPK by pharmacological inhibitor SB203580 enhanced the cytotoxic and growth inhibition effects of salinomycin. In contrast, enforced expression of MKK6E (a constitutively active form of MKK6) reduced the cytotoxicity and cell growth inhibition of salinomycin. Moreover, Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of salinomycin in NSCLC cells, which were associated with down-regulation of TP expression and inactivation of p38 MAPK. Together, the Hsp90 inhibition induced TP down-regulation involved in enhancing the salinomycin-induced cytotoxicity in A549 and H1975 cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Citotoxinas/toxicidade , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pulmonares/enzimologia , Piranos/toxicidade , Timidina Fosforilase/antagonistas & inibidores , Células A549 , Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Timidina Fosforilase/biossíntese , Timidina Fosforilase/genética
6.
Toxicol Res (Camb) ; 7(6): 1247-1256, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30555679

RESUMO

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects that include anti-cancer and anti-inflammatory properties. Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair and is involved in regulating non-small cell lung cancer (NSCLC) cell proliferation and viability. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in NSCLC cells. However, whether astaxanthin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating XPC expression is unknown. In this study, we found that p38 MAPK activation by astaxanthin decreased XPC expression in two human lung adenocarcinoma A549 and H1975 cells. Inactivation of p38 MAPK by pharmacological inhibitor SB203580 or the specific small interfering RNA (siRNA) rescued the astaxanthin-reduced XPC mRNA and protein levels. Enforced expression of XPC cDNA or inhibiting the p38 MAPK activity reduced the cytotoxicity and cell growth inhibition of astaxanthin. In contrast, knockdown of XPC using siRNA enhanced the cytotoxic effects of astaxanthin. Moreover, astaxanthin synergistically enhanced cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of XPC expression and activation of p38 MAPK. Our findings suggested that the astaxanthin induced p38 MAPK mediated XPC down-regulation enhanced the erlotinib-induced cytotoxicity in A549 and H1975 cells.

7.
Pharmacology ; 102(1-2): 91-104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953987

RESUMO

Etoposide (VP16) is a topoisomerase II inhibitor and has been used for the treatment of non-small cell lung cancer (NSCLC). Xeroderma pigmentosum complementation group C (XPC) protein is a DNA damage recognition factor in nucleotide excision repair and involved in regulating NSCLC cell proliferation and viability. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) enhanced etoposide-induced cytotoxicity in NSCLC cells through modulating the XPC expression. We found that etoposide increased XPC expression in an AKT activation manner in 2 squamous cell carcinoma H1703 and H520 cells. Knockdown of XPC using siRNA or inactivation of AKT by pharmacological inhibitor PI3K inhibitor (LY294002) enhanced the cytotoxic effects of etoposide. In contrast, enforced expression of XPC cDNA or AKT-CA (a constitutively active form of AKT) reduced the cytotoxicity and cell growth inhibition of etoposide. Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of etoposide in NSCLC cells, which were associated with the downregulation of XPC expression and inactivation of AKT. Our findings suggested that the Hsp90 inhibition induced XPC downregulation involved in enhancing the etoposide-induced cytotoxicity in H1703 and H520 cells.


Assuntos
Benzoquinonas/farmacologia , Etoposídeo/farmacologia , Lactamas Macrocíclicas/farmacologia , Xeroderma Pigmentoso/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Morfolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...